M1.		(a)	(i)	(free–) radical substitution (both words required for the mark)	
			initia	ation Cl₂ → 2Cl· (credit correct half arrows, but penalise double headed arrows)	1
			first	propagation $CH_3CI + CI \rightarrow CH_2CI + HCI$	1
			seco	and propagation $\cdot CH_2CI + CI_2 \rightarrow CH_2CI_2 + CI$ (penalise the absence of dots on radicals once only)	1
				(penalise radical dot on Cl of CH₂Cl once only)	1
		(ii)	CH₃	$CI + CI_2 \rightarrow CH_2CI_2 + HCI$ (penalise if any radicals appear in this equation)	1
	(b)	M 1:	: mol	C = 10.1/12.0 <u>and</u> mol Cl = 89.9/35.5	1
		M2 :	Rati	o 0.842 : 2.53 OR 1: 3 OR CCI3	1
		M3 :	237	.0/Mr of $CCI_3 = 237.0/118.5 = 2$ Therefore C_2CI_6 (correct answer gains full credit)	1
		OR			
		M1 :	237	.0 × 10.1/100 <u>and</u> 237 × 89.9/100	1
		M2 :	Rati	o 23.9/12.0 : 213/35.5 OR 2 : 6	1
		M3 :	C₂C	(correct answer gains full credit)	1
	(c)	$C_2Br_{\theta}(or CBr_{\theta}CBr_{\theta})$			
				(ignore HBr or H₂) (ignore equations and ignore names when given in addition	
				ignore equations and ignore names when given in addition	

M3.

[1]

[10]

(a) (i) $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl (1)$ (ii) UV light / sunlight OR <u>high</u> T OR T \geq 500°C (1) maxT = 1000°C NOT heat / light Ignore pressure

(b) Initial step: $Cl_2 \rightarrow 2Cl^{-}$ (1) Condition could be on first equation arrow

> First propagation step: $CHCl_3 + Cl \rightarrow CCl_3 + HCl (1)$ Second propagation step: $CCl_3 + Cl_2 \rightarrow CCl_4 + Cl (1)$ A termination step: $CCl_3 + Cl \rightarrow CCl_4 (1)$ $OR \ 2Cl_3 \rightarrow C_2Cl_6$ Not $2Cl \rightarrow Cl_2$

Ignore additional termination steps

[6]

2

4

2

M4. M1: uv light/sunlight

OR

	T = 450 °C to 1000 °C; (do not credit "high temperature") (ignore references to pressure or catalyst) (penalise M1 if aqueous chlorine OR chlorine water) (credit M1 if the condition appears over the arrow of the initiation step)	1
M2:	$Cl_2 \rightarrow 2Cl_3$; (credit correct half arrows, but penalise (once in the question) the use of double headed arrows)	1
M3:	$C_2H_5 + CI. \rightarrow CH_3CH_2. + HCI;$ (credit CH_3CH_3 for ethane and C_2H_5 - for the ethyl radical)	1

- $\mathsf{M4:}\quad \mathsf{CH}_{\scriptscriptstyle 3}\mathsf{CH}_{\scriptscriptstyle 2}{\boldsymbol{.}} + \mathsf{CI}_{\scriptscriptstyle 2} \ \rightarrow \ \mathsf{C}_{\scriptscriptstyle 2}\mathsf{H}_{\scriptscriptstyle 5}\mathsf{CI} + \mathsf{CI}{\boldsymbol{.}};$
- M5: $CH_{3}CH_{2}$ + $CH_{3}CH_{2}$ $\rightarrow C_{4}H_{10}$;

(penalise the absence of dots once only in this question) (penalise subsequent ionic reactions as contradictions for each reaction contradicted)

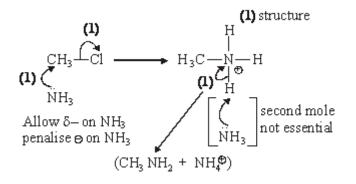
(if <u>neither</u> M3 nor M4 scored, allow CH_3CH_2 . + $CI. \rightarrow C_2H_5CI$ for one mark)

1

[5]

1

M5. (a) (i) UV light OR sunlight OR T \ge 450°C (1) NOT high T


- (ii) (free) radical substitution (1)
- (iii) CCl₄ (1) OR named

(b) (i) $CH_{3}CI + KCN \rightarrow CH_{3}CN + KCI$ (1) CN^{-} CI^{-}

- (ii) <u>nucleophilic substitution</u> (1)
- (iii) <u>C-Br bond</u> is <u>weaker</u> (than C-Cl bond) OR <u>C-Br bond</u> enthalpy is <u>less than</u> C-Cl **(1)** *Ignore electronegativity*
- (c) $CH_3COOH OR$ ethanoic acid (1)

(d) (i)
$$\overset{\delta_{+}}{C-CI} OR C-CI \text{ is polar } (1) OR C \text{ atom is electron deficient } / \delta_{+}$$

- (ii) methylamine (1) only
- (iii) S_N1 scores full marks

[13]

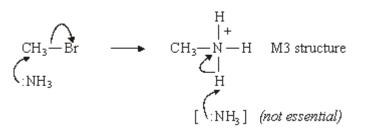
M6. (a) (i) (Free) radical substitution (Both words needed)

1

6

3

3


1

M2 ultra-violet light OR sunlight OR 1000°C ≥ T ≥ 450 °C (Ignore reference to temperature if included with uv light) (Penalise "high temperature" for M2)

	(iii)	$2\dot{C}H_3 \rightarrow C_2H_6$ (OR CH ₃ CH ₃ as alternative to C_2H_6)	1
	(iv)	$CH_{3}Br + Br_{2} \rightarrow CH_{2}Br_{2} + HBr$	1
)	(i)	<u>Electron pair donor</u> OR species with an <u>electron pair</u> able to form a covalent <u>bond</u> .	1
	(ii)	Methylamine	

(iii)

(b)

M1 arrow to show breakage of C – Br bond

M2 arrow from lone pair on N of NH_{3} to form bond with C

1

1

1

1

1

1

M4 arrow from bond of N – H to N atom of $CH_{3}NH_{3}$

(Ignore partial charges on haloalkane but penalise if incorrect)

(Accept
$$CH_3 \overset{i}{N} H_3$$
 for M3)

(Full credit for carbocation mechanism; M1 for C – Br bond breakage and M2 for lone pair attack on carbocation) (Second mole of ammonia not essential to mechanism for full credit)

M7.		(a) $F_2 \rightarrow 2F^{\bullet}$	1
		$CH_4 + F \bullet \rightarrow \bullet CH_3 + HF$	1
		$\bullet CH_3 + F_2 \rightarrow CH_3F + F \bullet$	1
		$\bullet CH_{\scriptscriptstyle 3} + F \bullet \to CH_{\scriptscriptstyle 3} F$	1
		OR 2•CH ₃ \rightarrow C ₂ H ₆ (allow credit on this occasion for 2F• \rightarrow F ₂) (penalise incorrect symbol FI, once only) (penalise absence of radical dot once only)	
	(b)	$CH_{3}F + 3F_{2} \rightarrow CF_{4} + 3HF$	

[11]

1

[5]